Q

1064nm Long-Distance Collimating Lens

• Product Description

IDEAL The Power of Light PHOTONICS

The 1064nm Long-Distance Collimating Lens is designed to collimate and shape the output from optical fibers, providing diffraction-limited performance for lasers emitted through various fiber connections at the designed wavelength. The collimation distance can reach up to 200 meters. This series of collimating lenses has a compact structure that is not affected by misalignment. The design incorporates aberration correction and uses an air-spaced double-lens configuration, ensuring excellent collimation results. The effective focal length of the double-lens is wavelength-dependent, so it is recommended to use this series of collimating lenses at the designed wavelength for optimal performance.

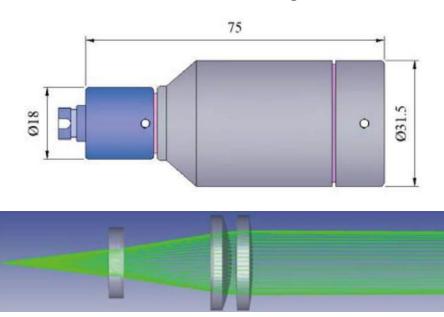
• Part Number

NIR-CLM-1064-15.2-0.005-95

Product features

Fiber Collimator with FC/APC, FC/PC, or SMA905 Connectors、 Can be used

www.idealphotonics.com



for wavelengths from 405 nm to 1.55 μm. Simplified coupling of free-space laser to optical fiber Double-lens design, aberration correction performance. Non-magnetic stainless steel housing

Dimensional Drawing

Parameters

Beam waist spot diameter: Taken at the 1/e² point of the Gaussian beam, calculated using the theoretical value for single-mode fiber at each wavelength.

Far-field divergence angle of the beam: The input uses single-mode fiber for each wavelength, with the divergence angle calculated according to the theoretical value of a Gaussian beam at the $1/e^2$ point. Tolerance: $+ 0.01^\circ / 0.0^\circ$

Technical Parameters

Central Wavelengt h	Bandwidt h	Beam Waist Diamete r (at 1/e ²)	Beam Divergenc e Angle (Far Field)	Effectiv e Focal Length	Numerica I Aperture (Lens)	Fiber	Transmittanc e
405nm	\pm 30nm	10.2mm	0.09mrad	66.5mm	0.19	405HP	>92%
450nm	±30nm	13.7mm	0.07mrad	<mark>68.4mm</mark>	0.18	405HP	>92%

	anama ana ana			The second second second				
				www.idealphotonics.com				
			and the state of the					
520nm	\pm 30nm	14.2mm	0.06mrad	70.3mm	0.18	460HP	>92%	
635nm	\pm 30nm	14.5mm	0.07mrad	72.1mm	0.17	630HP	>92%	
780nm	\pm 30nm	14.2mm	0.07mrad	73.3mm	0.17	780HP	>92%	
850nm	\pm 30nm	14.9mm	0.07mrad	73.7mm	0.17	780HP	>92%	
905nm	\pm 30nm	14.9mm	0.07mrad	73.9mm	0.17	980HP	>92%	
980nm	\pm 30nm	15.0mm	0.09mrad	74.2mm	0.17	980HP	>92%	
1064nm	\pm 30nm	15.2mm	0.09mrad	74.5mm	0.17	980HP	>92%	
1310nm	\pm 30nm	12.9mm	0.12mrad	75.1mm	0.17	SMF-28 e	>92%	
1550nm	\pm 30nm	14.2mm	0.14mrad	75.6mm	0.17	SMF-28 e	>92%	
1650nm	\pm 30nm	14.5mm	0.14mrad	76.0mm	0.17	SMF-28 e	>92%	

