

Fluoride single mode ZBLAN fiber patch cord 0.3-4.50um (core diameter 8.5um FC/APC 1.5m long)

Product Description

ZFG fiber is a composite glass fiber composed of heavy metal fluoride. Compared with the widely used quartz fiber, ZFG fiber has the characteristics of wide transmission wavelength range of $0.3\mu m^24.5\mu m$ and high emission efficiency of doped rare earth ions. In the application field of fiber lasers and amplifiers, in order to optimize their efficiency, through a unique fiber manufacturing technology, we have launched a low-cost production of high-quality (especially low-loss) fluoride fiber single-mode fiber with a specific D-type core. Customized fiber lasers and amplifiers can be designed and manufactured. Mid-IR supercontinuumLVF nonlinear single-mode fiber can achieve very flat and broadband output spectrum due to its excellent performance. (Mid-infrared supercontinuum laser) Mid-infrared spectroscopy and optical measurement. We provide a full range of ZFG fiber products to meet the needs of demanding fiber lasers, and can customize the cut-off wavelength, core diameter, cladding diameter, etc. We provide you with a full range of infrared external line solutions.

Part Number

ZFG-SM-(2.55)8.5/125-FC/APC-1.5

Product features

Specific D-core design . Extremely flat and broadband output spectrum . Mid-infrared supercontinuum spectrum Nonlinear single-mode fiber Low loss. High power handling capability

Application area

Mid-infrared supercontinuum lasers \ Medical fields Fiber amplifiers \ Optical measurement and installation Biochemical sensing

Since the discovery of ZBLAN glass in 1974, a variety of fluoride optical fibers have been developed, including ZrF 4, InF 3, and AlF 3 based fibers, designed for mid-IR applications.

Typical compositions of ZFG and IFG glasses are:

ZFG (Zirconium ZrF4 Fluoride Glass) = fluorozirconate fibers

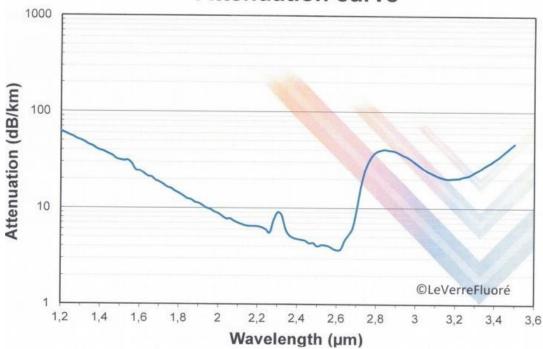
53 ZrF4 -20 BaF2 -4 LaF3 -3 AlF3 -20 NaF

IFG (InF3 Fluoride Glass) = fluoroindate fibers

40 InF3 -20 ZnF2 -20 SrF2 -20 BaF2

They have the specificity of high transparency from UV to mid-IR: 0.22 to 7 μm and 0.255 to 8 μm for ZFG and IFG (3 mm thick sample), respectively.

Thus, they completely cover the 3-5 μ m atmospheric transparency window and partially cover the molecular fingerprinting region, paving the way for numerous passive and active applications.


Part Number parameters

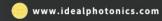
Test Report

231206/OF4116-x

Câble reference	ZFG SM [2,55] TJK 2FC/APC 8,5/125 - 1,5		
Part number	231206/OF4116-x		
Core diameter	8.5 μm		
1st Cladding diameter (*)	125 μm		
2nd Claddind diameter	N/A µm		
Doping concentration (mol)	N/A		
Numerical aperture	0,23		
Cut-Off wavelength	2.55 μm		
Cable length	1.5 m		
Jacket	Kevlar Jacket	OD:4 mm	
Connectors	2 FC/APC		
Long term Bending radius	≥ 45 mm		

Attenuation curve

General parameters

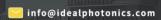

Parameter characteristics

Transmission range (μm)	0.3-4.5	
Typical loss (dB/Km)	< 10	
Fresnel reflection loss (air)	4%	
Coating material	UV Curable Acrylate	

Technical parameters:

PN#	ZFG-SM-(1.95)6.5/12 5	ZFG-SM-(2.55)8.5/12 5	ZFG-SM-(2.2)7.5/150	ZFG-SM-(2.2)14/250
Core/cladding	6.5/125	8.5/125	7.5/150	14/250
diameter (um)		0.3/123	7.3/130	14/230
Numerical	0.23	0.23	0.23	0.125
aperture				
Cut-off				
wavelength	1.95	2.55	2.2	2.2
(um)				
Operating				
wavelength	0.3~3.90	0.3~4.50	0.3-4.0	0.3~4.1
(um)				

Short-term				
bending	≥15	≥15	≥15	≥25
radius (mm)				
Long-term				
bending	≥45	≥45	≥45	≥75
radius (mm)				

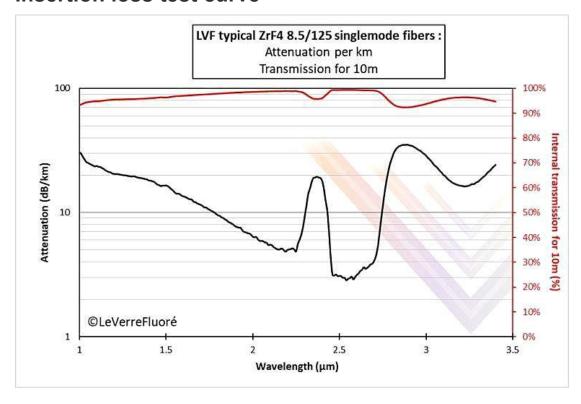

Ordering Info

Example: ZFG SM (1.95) 6.5/125

Cut-off wavelength (μ m): 1.95/2.55/2.2

Numerical aperture: 0.23/0.23/0.125

Core/cladding diameter (μ m): 6.5/125; 8.5/1235; 14/250



Insertion loss test curve

